当前位置: 大文学小说> 网游动漫> 大国院士> 第一百零七章:证明Weyl-Berry猜想的最后一步(3/5)

第一百零七章:证明Weyl-Berry猜想的最后一步(3/5)

是数学的圣地,谁也不知道酒店中是否入住了某位数学家,是否在某天晚上忽然有了灵感。

    所以为了学术,普林斯顿将一切服务做到了最好。

    很快,酒店的服务员就将厚厚的一碟稿纸送了过来,顺带的还有一句祝福。

    “祝您好运,先生。”

    不过徐川并没有理会,他此刻还沉浸在脑海中的构思中,无神的从小哥手中接过稿纸后,径直‘砰’的一声关上了房门。

    门口的小哥并没有介意,在这里工作,他见识到了太多的数学家,也见识到了很多的‘怪人’。

    像这间房间中的顾客,甚至都说不上怪,没有理会他,只能说明他此刻正沉浸在对某个问题的思考中。

    虽说看着年轻点不像是一名数学家,但年轻的数学家也不是没有。

    比如他们酒店在十来年前就入住过陶哲轩教授,那位大牛还在他们的酒店中解决过一个数学猜想。

    后面那间房间被当做具有特殊意义的房间保留了下来,很少对外开放了。

    .......

    从服务员的手中接过稿纸后,徐川再度回到了木桌前。

    带着点米白的白色稿纸平铺在桌上,黑色的圆珠笔开始在上面勾勒数学符号。

    “.....从weyl定理3.2出发,构造一个有界且连通的开集Ω,设Ω为满足以上条件(≥2)中有界连通区域,其边界具有内minkowski维数δ∈(n-1,n),则有λ→+∞,且有:

    n(λ)-?(λ)≤-,δ(λ/π2)δ/2.....pn(t+o(1))+o(δ?λ/π2)

    “......”

    “设Ω(a)为一个的连通区域,各正方形的边长为li=a(i+1)-a(i),,函数a(x)是严格单调增的,并且limf(x→∞)=limf(x→∞)(a(x+1)-a(x))=0......”

    “进一步要求Ω(a)的面积有界,即:|Ω(a)|2=∑∞/f(i=0)l2i

    “计算边界的内minkowski维数6以及6-维上minkowski容量......”

    “.......”

上一页 章节目录 下一页